October 20, 2013

Heather Sustersic had132@psu.edu

Dear Professor Sustersic,

The following technical report was written to fulfill the requirements specified in the Structural Technical Report 3 assignment that was handed out on September 27, 2013.

Technical report 3 includes a detailed structural analysis of the existing floor system used in the New Library at the University of Virginia's College at Wise, located in Wise, Virginia. This analysis includes an evaluation of a typical bay floor framing under gravity loads, and an evaluation of and interior and exterior column under these same gravity loads.

Technical report 3 also includes structural designs and analysis of three alternate framing systems. The design and analysis of each system includes calculations for preliminary sizing and checks for strength and deflections. These systems will be considered for possible options for the redesign to be completed next spring.

Thank you for reviewing this report. I look forward to discussing it with you in the future.

Sincerely,

Macenzie Ceglar

Enclosed: Technical Report 3

Technical Report 3

University of Virginia's College at Wise New Library

Macenzie Ceglar Structural Option Advisor: Heather Sustersic 18 October 2013

Executive Summary

The New Library at the University of Virginia's College at Wise will serve as a main link between the upper and lower campus areas, which are currently divided by a steep 60 foot hill. The new 6 story, 68,000 ft², library will be integrated into the hillside, and will provide students with an easier and safer path across campus. The architectural design of the façade incorporates traditional materials found on campus, such as brick and stone. Construction on the New Library began in August 2012 and will be completed in August 2015.

Soil loads caused the foundation system for the New Library to be unique in its design. The foundation system utilizes a temporary leave-in-place soil retention system and foundation walls which are designed to resist future lateral soil loads. Other parts of the foundation system include piers, footings, and slabs-on-grade.

All six stories of the building have composite floor framing involving both composite steel wide flange members and composite decking. Framing layout in the building is fairly typical with bay sizes ranging between 25'-4" x 25'4" and 31'-0" x 25'-4". Steel wide flange columns are used as the vertical framing system and shear walls make up the building's lateral system.

Loading conditions considered in the building's design include live loads, gravity loads, snow loads, wind loads, seismic loads, and lateral soil loads.

The Virginia Uniform Statewide Building Code (USBC); along with "Facility Design Guidelines", governs the design of all buildings on the campus. The USBC adopts chapters 2-35 of International Building Code (IBC) 2009, which references codes and standards which include American Society of Civil Engineers (ASCE) 7-05, American Concrete Institute (ACI) 318-08, and the 13th edition of the Steel Construction Manual.

Table of Contents

Executive Summary	1
Table of Contents	2
Building Abstract	3
Site Plan and Location of Building	4
List of Documents used in Preparation of Report	5
Gravity Loads from Technical Report 2	6
Gravity Spot Checks for Existing System: Composite Steel	16
Structural Redesign 1: Non-composite Steel	24
Structural Redesign 2: One-Way Slab with Beams	32
Structural Redesign 3: Two-Way Slab with Drop Panels	49
Appendix	76
Floor Plan	77
Typical Bay with Dimensions	78
SP Column Output	79

University of Virginia's College at Wise - New Library _{Wise, VA}

General Information

Full Height: 119' Number of Stories: 6 Size: 68,000 GSF Cost: \$43 Million Date of Construction: Aug 2012 – Aug 2015 Project Delivery Method: Design-Bid-Build

Project Team

Owner: UVA at Wise Architect: Cannon Design Structural: **Cannon Design** MEP: Thompson and Litton Lighting: Lafleur Associates Construction: Quesenberrys, Inc. Civil: Thompson and Litton Landscape: Hill Studio AV/Acoustics: Shen Milsom Wilke Foodservice: **Culinary Advisors**

Project Sponsor:

CANNONDESIGN

Architecture

The goal of the façade design was to give the impression that the older existing buildings' architecture was based on the New Library's. This was achieved through use of materials such as brick and stone commonly found on the surrounding buildings.

Construction

Limited site area due to existing campus buildings impacted the construction by requiring offset staging and storage areas, along with the construction of a 500 foot service road.

Structural Systems

Foundation:	Slab on grade with column piers, footings and foundation walls
Framing:	Steel frame, composite wide flange steel members, and normal weight composite deck flooring
Lateral:	9 Reinforced concrete shear walls
Soil Retention:	Temporary Leave-In-Place Soil Retention System, which includes the use of soil nails and shotcrete covering.

Mechanical

VAV system with a roof mounted chilled-water AHU and 145.9 ton chiller providing 41,300 CFM, and an economizer and an a heat recovery unit

Electrical/Lighting

Five 480/277 3-phase panel boards Nine 280/120 3-phase panel boards

Wall switch and low voltage occupancy sensors used for lighting control

Page 3

Site Plan

Location Plan

•

Documents Used in Preparation of Report

Below is a list of the design codes and standards used in the structural analysis of the New Library at the University of Virginia's College at Wise.

- International Code Council
 - International Building Code 2009 (Chapters 2-35 Adopted by Virginia Uniform Statewide Building Code)
- American Society of Civil Engineers
 - o ASCE 7-05: Minimum Design Loads for Buildings and Other Structures
- American Concrete Institute
 - ACI 318-11: Building Code Requirements for Structural Concrete
- American Institute of Steel Construction
 - \circ Steel Construction Manual 13th Edition LRFD
 - **Concrete Reinforcing Steel Institute**
 - CRSI Handbook 2008
- Reinforced Concrete Mechanics and Design 6th Edition
 - By: James K. Wight, James G. MacGregor
- Vulcraft Deck Catalog
- University of Virginia Facilities Management and University Building Official

 Facility Design Guidelines
- University of Virginia's College at Wise New Library
 - Construction Documents
 - Specifications

Gravity Loads from Technical Report 2

Roof Live Load

"ONTIMORY"

Tech Report 2 M

Macenzie Ceglar

9

Typical Roof Bay Live Loading

LOADS	Design Value	Code Minimum
Minimum Roof Live Load	30 psf	20 psf
Roof Area Below Sloped Roof	30 psf	-
Roof Mechanical Area	150 psf	-

Reason for Differences

Minimum Roof Live Load: UVA Facility Guidelines specifies a minimum roof live load which overrules ASCET-05

Roof Area Below Sloped Roof: Unlikely that this area will see a live load so a minimum was used

Roof Mechanical Area: Final mechanical system was withown so design team provided a large enough allowance

	Floor Dead Load Tech Report 2 Macenzie Ceglar	10
	Typical Floor Bay Dead Loading Cross Section of Floor Calculation	
	Carpet Tile Carpet Adhesive + Pad Composite Deck 41/2" NWC 2" 18 gage	
arding	Uniformly Distributed Dead Loads	
	Composite Deck = 69psf	
	Carpet Tile = 1 psf	
	Pad + Adhesive = 0.5psf	
0	Super imposed misc:	
	ceiling = Spsf	-
	Mechanical = 10 pst	
	Framing Allowance = 10psf	
	ð	
	lotal = 105.5psf ⇒ 106psf	
~		
- friday -		

Non	- lypical Loads	Tech R	eport 2	Macenzie Ceglar	
	Von-Typical De	ead Loads			
	Loads	Location	Value	Justification	
	Roof Deck 11/2" Dogaqe	upper roof	2.16 psf	Vuicraft Catalog Bg9 (1.5 A Roof Deck)	
	Composite Deck 81/2" NWC 2" 18g	Level 4 Supporting Vestible area	105 psf	Vulcraft Catalog Pg 52 (6psf / 0.5" of topping)	
	3/16" Terrazzo Tile 24" X 24"	Level 4 Vestible and in Stair wells	9 bet	ASCE 7-10 Pg 402	
-					

Floor Live Load Tech Report 2 Macenzie Ceglar

12

Typical Floor Bay Live Loading

JANNAD'

Loads	Design Value	Code Minimum	Justification
Offices	50	50	ASCET-05
Carridor (Not First Floor)	80	Same as area. Served	Office + Partitions = 80
Partitions	76		Cannon Design Standard

=> These loads pertain to the typical bay specified in Technically Report 1. They are found in a large majority of the building. Library stacks make up a large part of the live loading, but are not located in the specified bay.

Mag	- Funical	2 bools	
1 1011	1 your	1 20000	

"ananak

Tech Report 2

port 2 Macenzie Ceglar

13

Non-Typical Live Loads

Loads	Location	Design	Code Min.	Justification
Library Stack Rooms	Level 2,3,4,5,6 In various locations	150psf	150 psf	ASCE 7-05
Mechanical Rooms	Level 2, lower roof	250psf	-	Design load based on equipment weight
High Density Storage	Level 1	250psf	250 psf	ASCET-05
Stairs	center, east corner, and south corner of building	100psf	100 psf	ASCE 7-05

	Snow Loads	Tech Report a	Macenzie Ceglar	15
2	<u>Lower Roof - Flai</u> Pf = 0.7 Ce Ct I F	<u>e</u> 204		
•	$C_{e=1.0}$ ($C_{t=1.0}$ I=1.1 (Partially Exposed Roof, Exp	DOSURE B)	
and the	Pg = 30psf			
R	Pf = OIT (1.0)(1.0)(1.0)(1.0)(1.0)(1.0)(1.0)(1.0)	.i)(30) = 23.1 psf		
	Ce = 1.0 Ct = 1.1	(contains large mechanice	al equipment)	
	I = 1.1 Pg = 30			
	PF = 0.7(1) CS = 1.0(0)	O(1.1)(1.1)(30) = 25.4 p cold roof, roof surface observed	ructed)	
	⇒ Design was co Snow load flat roof ar	onservative and used of 26 psf for both nd upper sloped ra	a design the lower of.	
0				

Gravity Spot Checks for Existing System:

Composite Steel System

	Framing - Beams
	Son - 25' 4"
	Spacing = 6' 10''
	W16×26
	LL= 80psf
	DL= 69 psf + 3 psf + 25 psf + 3:8 psf = 99.8 psf = 100 psf
	(Deck/Topping + flooring + mise DL + framing)
	$W_{u} = 1.2D + 1.6L$
	$= [1.3(100) + 1.6(80)] \times 6.833$ ft
*	= 1695 pit
IVAL	⇒ 1.695 Klf
N. I.	$\lambda = \lambda^2 + O(2\pi + 2\pi)^2$
	$Mu = \frac{\omega L^2}{8} = \frac{1.695(25.33)}{8} = 135.9^{-1}$
	Strength
	16 studs 16 studs 16 stude a ~12 riss
	* * *
	12.67 12.67 ~ 8 ribs w/ 1 studs
	Qn:
	Deck Perpendicular, weak studs (conservative), 3/4"Ø, f'c=3ksi
	$15 \text{ Evid} / 6 \text{ b} \Rightarrow Qn = 17.2$
	ZQO = 8(17.2) + 8(14.6) = 254.4 K
	Other properties
	b = - 25.33 (12) / 2 = - 2 = 1 =
	$min = \frac{1}{2} (6.833)(12) = 41''$
	$V_{5, max} = 7.68(50) = 384^{K}$ > 2.00 = 254.4K
	Vc, max = 0.85 (3)(76)(4.5) = 872 K
	$a = 2544^{k}$ $121^{n} \rightarrow V = 585$
	0.85(3)(76) = 1.51 - 7 12 - 0.05 m
0	From Table 3-19 (
ANT	Table U-19 (being conservative) WMN= 304
	304" > 135,9" > Beampasses for strength

Spot Cleck - Booms Tech Report 3 Marchael Central
Framma Cont. - Beams
General Structural Notes specify shoring so unishated
Strength doesn't read charked
Check Lock Concrete Deflection

$$W_{We} = 69 (6.833) + 36 = 497, 5015 = 0.4975 Klf$$

 $\Delta W_{C} = 5.023 = 5(0.4975 Klf (25.53 h) (27.2) = 0.528 m$
 $\Delta W_{C} = 5.023 = 5(0.4975 Klf (25.53 h) (27.2) = 0.528 m$
 $\Delta W_{C} = 5.023 = 5(0.4975 Klf (25.53 h) (27.2) = 0.528 m$
 $\Delta W_{C} = 5.023 = 5(0.4975 Klf (25.53 h) (27.2) = 0.528 m$
 $\Delta W_{C} = 3058^2 = 3 web concrete deflection ok$
Check Live Load Deflection
 $W_{W} = 30pst (6.783) = 545.5 plf = 0.5465 Klf$
 $Two = 300rth^4 (conservative choice)$
 $\Delta w = 30pst (6.783) = 545.5 plf = 0.5465 Klf$
 $Two = 320rth^4 (conservative choice)$
 $\Delta w = 30pst (6.783) = 545.5 plf = 0.5465 Klf$
 $Two = 324(29000 Kyz)$
 $\Delta w_{max} = 4/360 = \frac{25.33(19)}{369} = 0.544 m$
 $\frac{3}{29} 0.5944 = 30.2100 = 300 m$
 $\Delta w_{max} = 4/360 = \frac{25.33(19)}{369} = 0.544 m$
 $\frac{3}{200} 0.5944 = 30.2100 = 300 m$
 $\Delta w_{max} = 4/360 = \frac{25.33(19)}{360} = 0.544 m$
 $\frac{3}{200000000}$
 $\Delta w_{max} = 4/360 = \frac{25.33(19)}{360} = 0.544 m$
 $\frac{3}{200000} f(0.500 f(0.$

"CAPPOINTE

Spectneck - Gurder Tech Reports 3 Macenice Cegled
Ferming Cont. - Gurder
Shoring Provided So universed Strength not chucked
Chuck web concrete deflection

$$P_{We} = 0.4915 \ kdf \times (95.03) \pm 12.6^{3}$$

 $W_{We} = 0.2915 \ 0.003 \ kff \ inviten restrict
 $\Delta_{We} = 0.2915 \ 0.003 \ kff \ inviten restrict
 $\Delta_{We} = 0.2915 \ 0.003 \ kff \ inviten restrict
 $\Delta_{We} = 0.2915 \ 0.003 \ kff \ inviten restrict
 $\Delta_{We} = 0.2915 \ 0.003 \ kff \ inviten restrict
 $\Delta_{We} = 0.2915 \ 0.003 \ kff \ inviten restrict
 $\Delta_{We} = 0.2915 \ 0.003 \ kff \ inviten restrict
 $\Delta_{We} = 0.2913 \ 0.003 \ kff \ inviten restrict
 $\Delta_{We} = 0.2913 \ 0.003 \ kff \ inviten restrict
 $\Delta_{We} = 0.2913 \ 0.003 \ kff \ inviten restrict
 $\Delta_{We} = 0.2913 \ 0.003 \ kff \ inviten restrict
 $\Delta_{We} = 0.2913 \ 0.003 \ kff \ inviten restrict$
 $\Delta_{We} = 0.2923 \ kff \ inviten restrict$
 $\Delta_{We} = 0.2923 \ kff \ k$$$$$$$$$$$$

Spot Check-columns Tech Report 3 Macenzie Ceglar Framing - columns Interior column D6 -WIZXIJO - supports levels 2-6 + lower roof Floor DL= 69+ 2+ 5+ 10+ 10+ 6 = 102 psf 2 Framing Allowance Floor LL = 80 psf Roof DL = 117 psf CINARA D Roof LL = 150psf Roof snow Load = 26 psf Using worst case load combination 1.20 + 1.6 Lr + L: trib area = $\begin{bmatrix} 31_{2} + 27.33_{2} \end{bmatrix} \times \begin{bmatrix} 25.33 \end{bmatrix} = 739 \text{ ft}^{2}$ $P_{u} = \left[1.2(117) + 1.6(150) + 1.2(102)(5) + 80(5)\right] \times 739 \times \frac{1}{1000}$ = 1029 K => + Self weight of columns = 170(36)+120(32)+65(34) = 1217015 Pu = 1029 + 12170/1000 = 1041.2K From table 4-1 Effective legth = 18' \$P0 = 1620K 1620K> 1041,2K > column passes for strength * Note - this increased load capacity may be due to larger floor loads in some locations on upper floors due to general collections

Spot Checks-Columns Tech Report 3 Macenzie Ceglar Exterior Column - EG -W12×65 -supports level 4-6 + lower roof Floor DL = 102 psf FLOOF LL = 80 por Roof DL = 117 psf ROOF LL = 150 psf Roof Snow Load = 26psf using worst case load combination 1.20+1.6 Lr+L: ZANPAD" trib area = [31/2 + 27.33/2] × [25.33/2 + 2] = 427.7 FE Pu = [1.2 (17 psf) + 1.4 (150) + 1.2 (102)(3) + 80 (37] × 427.7 /1000 + [1,2(1584)(27.33)]/1000 = 474.3K => + Self weight of columns = 65(32)+53(34) = 3882100 Pu = 474.3 + 3882/1000 = 478.2 K From Table 4-1 QP0 = 640 K => 640K > 478.2K => column passes for strength

Structural Redesign 1:

Non-composite Steel System

Mon-composite Steel
Deck + Secures
Schlicturfal RedeSign - Non-composite Steel
Deck + Secures
- use existing composite decking
Secure 3" dock, 4%" NWC, 18 gaps = 242118 (Marney)
Beams
- Same laujout as custing System so comparisons
can be made

$$0 - 1$$

 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$
 $0 - 1$

	Non-composite steel Girders Tech Report 3 Macenzie Cealor 8
	Girders
	Interior Girder
	Span = 27'4'' Spacing = 25'4''
	Point Loads from beams
	$W_{0,beam} = 1.2(69+2+25+4(swream)) + 1.6(80) \times 6.833/000 = 1.695 \text{KLF}$
"Q Walk	$P_{u} = 1.695(25.33) \times 2 \text{ point loads} = 42.9 \text{ Kif}$ = 127 pif = 127 pif = 0.127 Kif
A	
	$M_{u} = (0.5)(42.9)(27.33) + 0.127(87.33)^{2} = 598.1^{11/2}$
	Strength
0	$\Rightarrow Try w \\ 21 \times 68 \ \ \ \ \ \ \ \ \ \ \ \ \$
	Check Deflections
	$\Delta_{LL} = 0.05 (13.9^{k} (97.33)^{3} (178) = 0.571$ $(29000)(1480) \qquad \qquad$
	$L/360 = \frac{7.33(12)}{360} = 0.911$
	⇒ 0.911 > 0.571 ⇒ Girder passes deflections
	Check Girder Allowance
	$\frac{68}{25.33} = 2.68 < 5$
	> Use a walx68 girder
0	

	composite vs non-comp Tech Report 3 Macenzie Ceglar	9
	Comparison of Composite vs Non-composite system	-
0	Decking: same for both systems	
	Beams:	
	Composite Non-composite	
	W16 x 26 w/ 32 studs W14 x 26	
	Equivalent weight = 979^{153} weight = $26(25.33) = 659^{153}$	
OKUM.	Girders:	
R	Composite Non-Composite	
	W24×68 W/ 48 studs W21×68	
	Literior L Equivalent weight = 2338 155 weight = 90(27.33) = 2460 ibs	
	W24×55 W/ 30 studs W24×55	
\frown	L Equivalent weight = 1803155 Weight = 1503.155	
	⇒ From the comparison of the beams it seems as if the Non-composite beam is a more economical choice. Something not considered in this analysis/design is the load due to the general collections (150 psf) located in other bays. Please see next page for a more detailed look at this factor.	
	A similar situation may occur wi the girders	
~		

Composition of
composite is non-composite Tech Report 3 Macencie Ceglar
Composite vis Non-Composite Beams
* Contracting general contections
Existing Wilk285
Wue [1:2(100) + 1.6(100)] × 6.833/1000 = 2.446 kM
Mu = (244X05.32)² = R1.3¹⁴
As calculated before Ø Mn = 304¹⁴ > 181.3¹⁴
Chiefk deflections
Wue = 100 (6.835) = 1025 pt = 1.028 kH
Tub = 800.44

$$\Delta_{u} = 5(1.008/85.32)^{11}(1128) = 0.3944.10$$

 $Set (90000X800) = 0.484.10$
 $\Delta_{u} = 5.1000 (8.832)^{11}(1128) = 0.3944.10$
 $\Delta_{u} = 0.3444$
 $\Rightarrow 0.844 > 0.3944$
 $\Rightarrow 0.844 > 0.946$
 $Mu = (2.948 + 3.950)^2 = 199.24^{14} = 0.484 kH
Mu = (2.948 + 3.950)^2 = 199.24^{14} = 0.484 kH
 $Mu = (2.948 + 3.950)^2 = 199.24^{14} = 0.4844 kH
 $\Delta_{u} = 5(\frac{10924533}{(1128)}(0533)^4(1128) = 0.449^{14} HH$$$

_	Final Comparison of W16×26 w132 study vs W18×35	·
	W16×26 W/ 32 Studs > 979 150	
	W18 × 35 => 887 153	
	Summary	
	Once the 150 rest long is considered it can be	
	Seen that the Don-composite beam size	
	increases in death and weight but the composite	
	beam remains the same.	
	Although the W18x35 has a lower equivalent	
	weight, which may be used for cost concerns,	
	it does require increased space for depth and	
	increased weight per foot on girder.	
	One issue not addressed in this report	
	is the impact of vibrations on the	
	System. Vibrations on the composite	
	system typically are much lower than	
~	W/ non-composite. If vibrations	
	increase the size of the non-composite	
	Securis the decision to use a composite	
	System may de cleard.	
~		

Structural Redesign 2:

One-Way Slab with Beams

$$\frac{1}{12} + \frac{1}{12} + \frac{1}{12}$$

Page 38

and way sub with beams Tech Report 3 Macenne Central b
Design Shear Reinforcenent

$$S = Avfred = 0.32 (40X(19.5) = 19.5") > 5 max$$

 $3 = 5 pace & 9"$
Stirrup Landout
Terminare Sutrups as $4u \le 0.07640 = 10^{8}$
 $12 = 3.014(20.20) = 3.016(d)$
 $d = 8.76'$
Number of Settrups i
 $3" + (h - 1X9") > 8.16(10)$
 $h = 12.41 \Rightarrow 13 Settrups$
 $\Rightarrow (13) # 3 \times 13 & 9" Startung 3" from each supports$
DEAM SUMMARY
 $13x 93" NWC, 4000 posi
(4) # 8 longitudinal bars (costom)
(13) # 3 × 13 & 9" Startung 3" from each supports$

ore-way stop ut beams
Greer Tech Report 3 Macenze Ceptar
Girder Design - interior
Design Loads
Wux 3.016 kif

$$P_{4} = 3.016 kif$$

 $P_{4} = 3.016 kif$
 $P_{4} = 3.0007 P_{4} = 3.007 P_{4$

$$\frac{1}{3} \frac{1}{3} \frac{1}$$

OPErcody, stabury boards Tech Reports Macence Ceqlar
Max spacency of shear leunesteing
Vo
$$\leq$$
 4/FC build = 4/From (a)(35.5)/1000 = 1.178"
* Smax = min { d19 = 33.5/9 = 15.75
{ 24
Mun Shear Reinforcing
Ay = max { 0.75 /From (2)(16)/65,000 = 0.365
So(0x)(16)/65,000 = 0.365
= 0.251**
Design Shear Reinforcement
S = Avfired = 0.4(62(33.5)) = 10.3"
77.3
* Space @ 10"
Stirrup Layout
* Terminate Stirrups at Vit = 38.4"
* Terminate Stirrups at Vit = 38.4"
* Vu never < 35.4" = 35 serrups
* (35) * 4 × LS evening spaced storig 3" from
each support
(3) * 4 × LS evening spaced storig 3" from each
Supports

The way data in the cases Tech Report 3 Macenze Cenjear
Girder Design Loads
Where 3.075 KIF We way work 119¹⁶
Part 3.076 (25,03') = 39⁴
Center Prements
Mu =
$$[0.5(00X07.02) + 1.9(27.00)^{2}y]$$
 ×1.1 = 771.4⁴⁶
Estimate Sile
We = 3.076 (25,03') = 39⁴
Center Sile
We = $[0.5(00X07.02) + 1.9(27.00)^{2}y]$ ×1.1 = 771.4⁴⁶
Estimate Sile
We = $2.5(00X07.02) + 1.9(27.00)^{2}y]$ ×1.1 = 771.4⁴⁶
Estimate Sile
We = $2.5 + 31.1 + 31 + 8.2 + 5 + 20^{11}$
(29.3+6)
Compute Self-instant Effect
Wais: $20(3) \times 150 = (27.5 + 5) = 0.5875 KIF$
MU = 771.4^{16} (2005) $= 7.2 + 5(-3^{11}) = 7.8 m^{11}$
Required Steel
As: Mu = $\frac{57556}{44} = 7.2 + (5)^{4}11 = 7.8 m^{11}$
 $4^{12} = 4(29.5) = 7.2 + (5)^{4}11 = 7.8 m^{11}$
 $4^{12} = 4(29.5) = 7.2 + (5)^{4}11 = 7.8 m^{11}$
 $4^{12} = 4(29.5) = 6.7^{4}$ $c: 6.877.55 = 8.11 des - 10.00-\frac{10}{2} = 29.5$
More (1.8 Xec) (29.3 - 4.7%)/2 = 1002.3
Es: 0.003 (29.3 - 2.11) = 0.008 > 0.00907 M
 $2.11 = 0.9(10023) = 907.5^{11} > 945.5^{11} M$
 $\Rightarrow Check Flowing 26(7.92 - 9.11) = 0.008 > 0.00907 M$
 $B Mn = 0.9(10023) = 907.5^{11} > 945.5^{11} M$

Me usug stos ivi Beams
GIRDER
Cuce Minimum Peinfacemint
As,min = 3/Fe bud > 200 bud
Fy
=
$$3\sqrt{1000} (po(2913) > 200(po(2913))}{50,000}$$

= $1.85 > 1.95$
 $\Rightarrow provided As = 7.8m^2 > 1.95 m^2 \vee$
Check Maximum Peinfacement
As,max = $0.25 \ \text{S}_1 \ \text{fr} \left(0.003 - 0.004 \right) \text{ and}$
= $(0.95)^2 \left(\frac{1}{10} \left(0.003 - 0.004 \right) (ca(2913))$
= 12.1 m^2
 $\Rightarrow provided As = 7.8m^2 12.1 \text{ m}^2 \vee$

one-way bobs will bears
Great Tech Report 3 Macanze Cegler
Mon clear Divience -
$$\frac{1}{40}$$
 $\frac{1}{9}$ \frac

	Max Spacing of shear Reinforcing
	Yo 4 4 (Fic bod = 4,4000 (20)(29,5)/1000 = 149.3
	$\Rightarrow Smax = min \begin{cases} cl/z = 29.5/2 = 14.75 \Rightarrow 14'' \\ 24 \end{cases}$
	Min Shear Reinforcing
	$A_{V} = \max \left\{ \begin{array}{l} 0.75 \sqrt{4000} (20)(14) / 60,000 = 0.721 = 7 0.233 \\ 50 (20)(14) / 60,000 = 0.233 \end{array} \right.$
	> use 2 legs of # 4 starrups @ 14"
A A	0,2×2=0,4 >0,233
	Design Shear Reinforcement
	$S = A_{v} f_{vz} d = 0.4 (60(29.5) = 16.8)$ Ve 42.1
	\Rightarrow Space @ 14"
	Stirrup Layout
	⇒ Terminate Stirrups at Vu < 27.98k
	27,98 = 37.2 - 2.588(d) d = 3.55'
	Distance from Support = 10,39 ft
	Number of Stirrups:
	$\partial^{n} + (n-1)(14) > 10.39(12)$
	n= 9.76 => 10 starrups
	=> (10) # 4 × E1 @ 14" Starting 2" from each support
	GIRDER SUMMARY => EXTERIOR
	20" × 32" NWC, 4000psi (5) # 11 longitudinal bars (bottom) (0) # 4× 11 spaced at 14" starting 2" from each support

Structural Redesign 3:

Two-Way Slab with Drop Panels

University of Virginia's College at Wise - New Library

Т	Slab Thickness Tech Report 3 Macenzie Ceglar
	Structural Redesign - Two-way Slab w prop Pannels
0	Findetermining if I should design the stab w/ drop pannels I used the CRSI Design Handbook. Pg 9-31 recommends the following:
	For a 27' span w/ 150 psf alone (not including dead load) a 9" Slab and 35" columns are required. The current column sizes (including sleave) are 24" and the architect requested the columns are kept at this size or smalled
ANTPAL	Thus, I chose to use drop pannels
式	> Using the CRSI Hand book pg 10-23 recommends:
	For a 27' span w/ super imposed load = 400 pss a 9" slab and 21" columns.
	This is much more reasonable for my design.
	Determine Slas Thickness
	⇒ using Table 9.5c from ACI 318-11
	- Slab W/out interior beams - WI Drop Panels - exterior Panels - WIO edge beams
	- Use 24" X 24 Columns (See SP Slab print out in Appendix)
	h = ln = 31'0'(12) - 24'' = 9.67' = 0.58' =
	$\begin{array}{c} \hline \\ \hline $
	25.33'
	95.33'
	Trib Area of column $D6 = 29.165^{1} \times 25.33^{1}$ Trib Area of Column $E6 = 29.165^{1} \times 12.665^{1}$

The non-share the properties Text Report 3 Macanza Capled
Text Theorem (1980)
Text Report 3 Macanza Capled
PAL driversh Section of Column (det)(A)

$$(1000 pand) = 1.9(65/p)(30 = 315pcf + 0.0515 k def)
V_{11} + 0.444[(91.165 + 65.32) - (107/p)2] + 0.0515[(17/p) + 10/p]) - (17/p)3]
= 305.32 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 305.31 + 3.05
= 307.35 < 305.31 + 100 + 300
Must increase drop panel thickness$$

The Tuberway Share
The Tuberway Share

$$\Rightarrow$$
 Check Shead at critical section of drop panel
 $y_{uz} = 0.414 \left[(29.165 \times 25.33) - (\frac{19.5}{25} \times \frac{10}{19.5}) \right] = 36.6^{4}$
 $@Vin:$
 $y_{uz} = 2 (117 + 103 + 3 (3.5)) = 473 in$
 2 ± 10
 β_{x-100}
 $\alpha = 40$
 $\int_{-10}^{0} \left(\frac{4.64}{50} + 2 \right) = (\frac{4024}{975} + 2) = 2.10$
 $Min \left\{ \left(\frac{4.64}{50} + 2 \right) = (\frac{4024}{975} + 2) = 2.10$
 $Min \left\{ \left(\frac{4.64}{50} + 2 \right) = (\frac{4024}{975} + 2) = 2.10$
 $Min \left\{ \frac{4.64}{50} + 2 \right\} = (\frac{4024}{975} + 2) = 2.10$
 $Min \left\{ \frac{4.64}{50} + 2 \right\} = (\frac{4024}{975} + 2)(3.5)/1000 = 399.6^{4}$
 $\Rightarrow 399.6^{4} > 266^{4}$
 $A 117^{4} \times 100^{21}$ drap panel with a 3 in projection
below the stab will provide acteguate sheat
 $Strength$, at meetion asturn.

Two-way bids will for private
Ext: Two way shart
CINACK Shart Strength - two way Shart

$$\Rightarrow At cristical Section of Column (d=10.5m)$$

 $V_{u} = a_{u}UH [(0.4, 165 × 12, 665) - (375, 375)] + a_{u}do [(175 + 35) - (275, 375)]]$
 $= (192, 9 + 1.91)$
 $= 191, 27 \times$
 δV_{n} :
 $W_{0} = a_{u}UH [(0.4, 165 × 12, 655) - (375, 375)] + a_{u}do [(175 + 35) - (275, 375)]]$
 $= 100 \times$
 $M_{n} \int \{ 4 + 100 \times$
 $M_{n} \int (100 \times$
 $M_{n} \int (100 \times$
 $M_{n} \int (100 \times$
 $M_{n} \int (100 \times$
 $M_{n} (100 \times$
 M_{n}

The mean show or top pends
The mean strength Tech Reports Maconce Coglar
Counces Strip (Minddle Strip Dimensions

$$k_1 = 21.33^3$$
 $k_1 > k_2$
 $k_2 = 25.33^3$
 $k_1 > 2k_2$
 $k_2 = 25.33^3$
 $k_1 > k_2$
 $k_3 = 25.33^3$
Determine Reinforcement - negative reinforcement
Course Strip
 $A_2 = M_{21}^2 = 6021^{11} = 10.10^3 = (33)^{11} 3 + 18.11^4$
 $A_2 = M_{21}^2 = 6021^{11} = 10.10^3 = (33)^{11} 3 + 18.11^4$
 $A_2 = M_{21}^2 = 6021^{11} = 10.10^3 = (33)^{11} 3 + 18.11^4$
 $A_2 = M_{21}^2 = 6021^{11} = 10.10^3 = (33)^{11} 3 + 18.11^4$
 $A_2 = M_{21}^2 = 6021^{11} = 10.10^3 = (33)^{11} 3 + 18.11^4$
 $A_2 = M_{21}^2 = 6021^{11} = 0.10^3 = 2.11^6 determine
 $A_2 = M_{21}^2 = 6021^{11} = 0.10^3 = 2.11^6 determine
A_2 = 0.003 (18 - 2.11) = 0.001 > 0.00001 / 2.13
Min = 18.11 (60(16.5 - 2^{11})_2)/12 = 675.41^6
 $k_2 = 0.003 (18 - 2.14) = 0.001 > 0.00001 / 2.13
 $Min = 0.0(1616A) = 608.2 > 608.1^6 / 12
 $2^{11} 3$
 $Min = 0.001 (185.4 + 18.11 m^2 / 18.11^6 m^2 / 18.11^6$$$$$

	Two way slab w/ prop Panels Int Flexural Strength Tech Report 3 Macenzie Ceglar 78
	Check min spacing
	$M_{in} Clear dist = \begin{vmatrix} 1'' \\ 1'' \Rightarrow 4/3 \end{vmatrix}$
	Max 4/3
	Actual spacing = $12.665 \times 12 - 23(1) = 5.86'' > 43'' = 22$
	Middle Strip
2	$AS = Mu = 201 = 5.9 \text{ in}^2 \Rightarrow Try (19)^{\#} 5 = 5.89 \text{ in}^2$ $4d = 4(8.5)$
And	Check Flexural Strength
	0 = (5.89(60)) = 0.684 C = 0.684/0.85 = 0.805 0.85(4)(10.665 × 12)
	Mn = 5.89 (60 (8,5 - 01684) /12 = 240.3 1K
	ES = 0.003 (8.5 - 0.805) = 0.0291 > 0.00007
	\$Mn = 240,31K > 2011K
	Check min reinforcement
	As min > $200(12.665 \times 12)(8.5) = 41.31 < 5.89 $
	Check max reinforcement
	As, max = 0.852 (4/60)(3/7)(12.665 × 12)(8.5)
	$= 31.4 \text{ m}^2 7 5.89 \text{ m}^2 V$
	Check min spacing
	$min = \frac{4}{3}$
	Actual = (12.665×12) - 19(0.625) = 7.78" 74/31
	ACTA NORTHER STREET

	Two-way Slab w Drop Pares Int - Flexural Strength	Tech Repa	ort 3	Macenzie Ceglar	79
	Determi	ne Reinforcem	ent - posit	ive reinforcement	
0	Colu	mn strip			
		$As^{+} = \frac{Mu^{+}}{4d} =$	259 ^{1K} = -	1.62 m²	
		Check min rein	forcement		
		Asmin =	4.3102 < 7	16210Z	
6		=> Use	(10) # 8 =>	7.9112 > 7.62 112V	
Venny		Check max rein	forcement		
R		As mox =	26.67 m2 >	7.9 m²	
		Check min spo	acing		
		.Min spac	ing = 4/3" <	Act. Spacing = 15.8"	
		Check Flexural a = 0.917	Strength c= 1.08		
		0Mn= 2 25 = 0.0	0.206 y 0,009 0.206 y 0,009	97	
	Mide	lie Strip			
		$As^{t} = \frac{Mu^{t}}{4d} =$	= 173.2 ^{1K} = 4 (8.5)	5.0910 ² ⇒ (11) [#] 5 ⇒ 5.2	71102 -
		⇒ based on Max rei	previous r	inddie strip this passes	>
		Flexural Str a= 0.612	ength c= 0.70		
		$\phi Mn = 1$	94" > 173	2 ¹ K	
	⇒ Interior S	pan Sumr	nary		
	Columr	Strip: Tor Bo	$0 = (23)^{\#} 8 ($ $0 = (10)^{\#} 8 ($	ē 12.77" #8 @ 15,8"	
	Middle	Strip: Top Ba	p = (19) # 5 oftom = (17)	€ 7,78") # 5 € 8,83"	

$$\frac{1}{222} \frac{1}{222} \frac{1}{2222} \frac{1}{222} \frac{1$$

	Two-way Slas we prop Ranels Ext - Flexural Strength	Tech Repor	E 3	Macenz	e Ceglar	.83
	Determ	ine Reinforcem	ent - Pe	sitive Rein	forcement	
	Col	umn strip				
		$As^{+} = \frac{Mu^{+}}{4d} =$	345.4 ^{1K} 4(8.5)	$= 10.2 m^{2}$	⇒ (13) [#] 8 => 1	0.27 V
		Check min rein	forceme	NE		
		As, min = 4	.3 > 10	, 27 -		
R.		Check max rein	forceme	nt		
CAN		As, max = 7	96.67 in2	-> 10.27 m	2 /	
R		Check min spa	ang			
		Min clear o	dist = 4/	3		
		Actual S	= 12.665 ((12) - 13(1) 12	= 11.58 > 4/	3V.
		Check Flexural	streng	th		
		a = (10,27)(0	50) = 2.665×12)	1.19 0	= 1,19/,85 = 1,1	-1
		Es = 0.007 1.4	3 (8.5 -	1.4)=0.0	152 > 0.002	07 -
		qMn = 0.	9 (10:27	X60X815 - 11	19/2)/2	
		=	365.31	> 345,41*		

	Two-way slab wy prop Panels Ext-Flexural Strength Tech Report 3 Macenzie Ceglar :84
	Middle Strip
C	$As^{\dagger} = \frac{Mu^{\dagger}}{4d} = \frac{230.2}{4(8.5)} = 6.77 \Rightarrow (22)^{\#}5 = 6.8236.77^{4}$
	Check min reinforcement
	As, min = 5,61 m2 6,82 m2 1
	Check max reinforcement
b	As, max = 34.7 in2 < 6.82 in2 -
hanna	Check min spacing
R	Min clear = 4/3
	Actual S = $(16.5 \times 12) - 22(0.625) = 8.77 in^2 > 43V$
	Check flexural strength
0	Q = (6.83)(60) = 0.608 C = 0.608 = 0.715 $0.85(4)(16.5\times13) 0.608 C = 0.608 = 0.715$
	Es = 0.003 (8.5-0.715) = 0.032770.00207
	ØMn= 0.9 (6.82)(60)(8.5 - 0.608)/12 = 251.51 > 230.2 V
	=> Exterior span Summary_
	Column Strip: Top = $(22)^{\#} 8 @ 6.2"$ Bottom = $(13)^{\#} 8 @ 11.6"$
	Middle Strip: Top= (19) # 5 @ 11" Bottom= (22) # 5 @ 3.8"
	Page 68

Page 70
$$\frac{1}{100} \frac{1}{100} \frac{1}$$

	Cost Comparison	Tech Rep	ort 3 Mai	cenzie Ceglal 88
	Cast Compo	nison		
	Existing con	mposite steel su	istem	
	⇒ cost W/ a	estimate done location multi udes: Composite be	using RS Mean plier for $VA = 0.80$	B1010 256
	Bay Siz Total L	$e = 25.33 \times 27.33$ e = 100 + 150 =	3 350 psf	
2	Boy Si	ze Total Load	Total cost per SF	
belling	25 × 25 = 625	5 252 psf	25.90	
R	25 x 2 = 675	7 ⇒ use 252 psr (>250)	.?	
	25 × 3 = 750	0 252 psf	66	
	750 - (26 - 3	625 = 750-675 25.90 26 - x	5 ⇒ 25.94 (o.85)	= \$22.05/SF
	Non-compos	oite steel system		
	=> cost W	estimate done u location multipli	sing RS Mean BIO er for VA = 0.85	10 254
	in the second	reinforcer	ders, composite stee d w/ WWF	el deck, slab
	Bay Siz Total 1	ce = 25,33' x 27,3 .cad = 100 + 150 =	3' 250 psf	
	Cay 5	size Total Load	d Total cost per si	F Cost per SF @ 250psf
	75 x = 629	25 181 por 5 263 por	33,80	33.10
	ə5 x = 678	27 250 pef		?
	ə5 x = 75	30 180 psf 50 2.59 psf	39,20	34.87
	265 33.	3-181 = 263-250 8-29.4 33.8 - X	⇒ ×= 33.10	
	25	9 - 180 = 359 - 35	0 ⇒ ×= 34.87	
	75	0-675 = 750-615	-> ?= 33.81 (.85) => \$ 28.74/SF
	34,8	1-0000 0101		Page 72

				Macencie Ceglear							
	One-way Sla	6 (2) Bear	15								
	=> cost estim W/ a loc	late clone win Lation Multip	ig RS Mean liter for VA	51010 219=0.85							
	Includes:	Solid concrete w/ reinforced	one way si concrete t	las cast monolithidally beams & girders							
	Bousize -	25.33 × 21.33									
	Slas thickne	55 = 8.5"									
	Total Load =	131 + 150 = 3	181 psf								
	Bay size	Total lood	COSE PER SF	COSE PER SF @ 281 pof							
	25 x 25	756	30	20							
	= 625										
	25 × 27	281	_	?							
	= 675		wage was proved and a second								
	30 × 35	254	21.90	22.33							
	=1050	332	23.15								
	337 - 254	= 332 - 281	=> X= 99	.33							
	23.10 - 21.90	23.15 - X									
	1050 - 625	= 1050 - 6 29.33 - 7	15 ⇒ ? =	20.27 (-85)= \$17.23/SF							
	Two-unit Stat	WI DED P	20015								
	ind addy orac		<u>U LEAD</u>								
	=> cost estin	nate done usu	ng Rs mean	BIOID 222 W/ location							
	Mutiplie	r for $vA = 0.8$	5								
	includes:	Flat solid Sk	ab wildrop	panels							
	Bay Size =	25,33 × 27,33									
-university Sch	Slab thickn	ess = 10."									
	Total Load	d = 145 + 150	= 295 pof								
	Bay Size	Total Load	Cost per s	F Cost per SFe 295psf							
	25× 25	243	16,85	17.21							
	= 625	329	17.45								
	25×27	295		?							
	= 675	and the second									
	= 675 25×30	203	17.05	18.00							
	= 675 25×30 = 750	203 256	17,50	18.00							
	= 675 25 × 30 = 750	203 256	17.05 17.50	18.00							

	cost companison	Tech Report 3	Macenzie Ceglar	90
	329-243 = 329-29 17.45-16.85 17.45-x	5 ⇒ ×= 17.21		
	295-203 - 256-203 X - 17.05 17.60-17.05	=) x = }8.00		
	$\frac{750-625}{18-17.21} = \frac{750-}{18-18-18}$	675 => ? = 17.53 (.85) = \$ 14.90/SF	
anding				
0.				

	Fire Protection / Fire Rating	Tech Report 3	Macenze Ceglar	.91
	Fire Protection	+ Fire Rating		
0	Existing Compo	osite Steel System		
	⇒ Fire proofin	ng required for bearns	, girders & underside of deck	
	⇒ 41/2" NWC	provides 2hr fire ra	ting	
_	Non-composit	e steel system		
b	⇒ Fire proof	fing required for beams, gi	rders + underside of deck	
Antra	⇒ 4½" NWC	provides ahr fire ratin	ng	
	. One-way slas w	DL Beams_		
	⇒ No fire 1 require	proofing required but n ed	ie cessary rebar cover is	
	regu	uired cover for 2hr ra	ting :	
\cap		Slabs => 3/4"		
ì		Beams \Rightarrow $3/4"$		
	⇒ Əhr fire than	e rating provided by 8 the 41/2" required	5" Slab which is greater	
	Two-way Slat	, w/ Drop Panels		
	> No fire pr 15 regu	rooting required but n ured (same as one wa	ucessary rebuil cover uy stab)	
	⇒ Əhr fire greater	rating provided by 10 1 than the 41/2" regu	"slas which is lired	

	Floor System Designs							
Criteria	Composite Steel	Non-composite Steel	One-Way Slab with Beams	Two-Way Slab with Drop Panels				
System Statistics				•				
Cost	\$22.05/SF	\$28.74/SF	\$17.23/SF	\$14.90/SF				
Weight	78.6 PSF	80.3 PSF	218.2 PSF	185.2 PSF				
Architectural								
Maximum Depth	30.5"	30.5"	36"	13"				
Additional Fire Proofing Required	YES	YES	NO	NO				
Fire Rating	2 HR	2 HR	2 HR	2 HR				
Servicability								
Vibrations	Likely	Likley	Minimal	Minimal				
Future Considerations								
Lateral Systems			Concrete Shear Wall, Concrete	Concrete Shear Wall, Concrete Moment Frame				
	Concrete Shear Wall	Concrete Shear Wall	Moment Frame					
Durability	Acceptible	Acceptible	Acceptible	Acceptible				
Advantages	Light weight, average depth, minimal formwork required	Light weight, average depth, works well with multiple types of lateral systems, minimual formwork required	No additional fire proofing required, less expensive per SF, decreased vibrations	No additional fire proofing required, decreased depth, least expensive per SF, decreased vibrations				
Disadvantages	More expensive per SF, additional fire proofing required, higher chance of vibrations	Most expensive per SF, additional fire proofing required, higher chance of vibrations	Increased depth, largest weight system, formwork required	Increased weight, formwork required				
Feasable for Redesing	N/A	NO	YES	YES				

Appendix

University of Virginia's College at Wise - New Library

Technical Report 2

Macenzie Ceglar Structural Option

University of Virginia's College at Wise - New Library

Technical Report 2

University of Virginia's College at Wise - New Library

				000	000			0									
				00	00			00									
000	000	0000	000	00		000	000	00		00	00	0 000	200000	000	0 000	000	
00	0	00	00	00		00	00	00		00	00	00	00	00	00	00	
00		00	00	00		00	00	00		00	00	00	00	00	00	00	
000	000	00	00	00		00	00	00		00	00	00	00	00	00	00	
	00	0000	000	00		00	00	00		00	00	00	00	00	00	00	
0	00	00		00	00	00	00	00	0	00	00	00	00	00	00	00	
000	000	00		000	000	000	000	00	0	000	0 000	00	00	00	00	00	(TM)

spColumn v4.81 (TM)
Computer program for the Strength Design of Reinforced Concrete Sections
Copyright © 1988-2012, STRUCTUREPOINT, LLC.
All rights reserved

Licensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the license's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program. STRUCTUREPOINT - spColumn v4.81 (TM) Licensed to: Penn State University. License ID: 59919-1033951-4-22545-2CF68 untitled.col Page 2 10/15/13 11:00 PM

General Information: File Name: untitled.col Project: Tech Report 3 Column: D6 Code: ACI 318-11 Engineer: MAC Units: English Code: Run Option: Design Slenderness: Not considered Run Axis: X-axis Column Type: Structural Material Properties: -----f'c = 4 ksi Ec = 3605 ksi fy = 60 ksi Es = 29000 ksi Ultimate strain = 0.003 in/in Beta1 = 0.85 Section: _____ Rectangular: Width = 24 in Depth = 24 in Gross section area, $Ag = 576 \text{ in}^2$ Iy = 27648 in^4 ry = 6.9282 in $Ix = 27648 \text{ in}^4$ rx = 6.9282 in $Y_0 = 0$ in Xo = 0 in Reinforcement: _____ Bar Set: ASTM A615 Size Diam (in) Area (in²) Size Diam (in) Area (in²) Size Diam (in) Area (in²) ----- ----------- ------

 # 3
 0.38
 0.11
 # 4
 0.50
 0.20
 # 5
 0.63
 0.31

 # 6
 0.75
 0.44
 # 7
 0.88
 0.60
 # 8
 1.00
 0.79

 # 9
 1.13
 1.00
 # 10
 1.27
 1.27
 # 11
 1.41
 1.56

 # 14
 1.69
 2.25
 # 18
 2.26
 4.00
 4.00

Bar selection: Minimum number of bars Asmin = 0.01 * Ag = 5.76 in^2, Asmax = 0.08 * Ag = 46.08 in^2 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65Lavout: Rectangular Pattern: All Sides Equal (Cover to transverse reinforcement) Total steel area: As = 31.20 in^2 at rho = 5.42% Minimum clear spacing = 2.31 in 20 #11 Cover = 1.5 in Factored Loads and Moments with Corresponding Capacities: _____ Design/Required ratio PhiMn/Mu >= 1.00
 Pu
 Mux
 PhiMnx PhiMn/Mu NA depth Dt depth
 eps_t
 Phi

 No.
 kip
 k-ft
 k-ft
 in
 in
No. 0.00 1028.33 999.999 11.07 21.30 0.00277 0.710 1 450.00

*** End of output ***